
Step-by-Step Guide
to the

This presentation is a summary of the workshop that was held on 15 April, 9 PM (GMT+8)on Discord

Why join the V Hackathon

Level up your skills!
WebGL, Shaders, RUST, WASM

Win generous prizes!
16 winners, prizes ranging from $500 to $1000

Turn your Shader into an NFT Collectible!
Upload your art to the blockchain to make it immutable

Learn more about blockchain!
V Systems is a team of blockchain experts since 2012

How to join the V Hackathon

Step 1: Code your Shader

Step 2: Compile your Shader into a binary format

Step 3: Publish it on the V Systems chain

Step 4: Fill out the form with the Shader NFT ID

Wait for the Winner Announcement!

STEP 1

CODE YOUR SHADER

Shader Expert & Judge

Ksenia Kondrashova
Web Developer &Interactive Graphics Artist

Ksenia is a freelance web developer
specialized in computer graphics, motion
design, interactive animation, and
high-performance visualizations.

WEBGL SHADERS

Shaders in Web Development
3D Visualizations
● zygotebody.com – Human body visualization
● github.com – Globe visualizing GitHub activity
● nasa.gov – Asteroids map

Cool Interactions and Transitions
● designembraced.com – On-click content opener
● Image transition by Ash Thornton – On-scroll image transition

Just

Pure Fun
● blobmixer.14islands.com – Iconic blob animation
● monopo.london – Shader background

WebGL also powers many tools you're used to: photo editors, maps, and more Even though it’s not new, shaders are having a moment in web design 💸💸

WEBGL SHADERS

Tech & Tools

A shader is a piece of code that runs
directly on the GPU

When you build a webpage, you normally use languages like
JavaScript, and your code runs on the CPU

→ WebGL* builds a “bridge” between web apps
and GPU

By now, WebGPU is gradually replacing WebGL

WEBGL SHADERS

Requirements to run a shader

● A bit of web dev knowledge
HTML, CSS, JS, or frameworks like React

● Shader knowledge
GLSL in WebGL, WGSL in WebGPU

● A general understanding of WebGL/WebGPU for passing data
between JS and the GPU

WEBGL SHADERS

2D and 3D Graphics

📄 Both 2D and 3D graphics are rendered on the <canvas> element.
From HTML perspective, having <canvas> element on the page is
all you need

🖌 CSS also plays a very small role to set size & position of
<canvas>

⚙ Everything happens in
● JavaScript – or a framework like React
● GLSL (or WGSL) shaders

This code is getting inserted in JS as a string and to be
passed straight to GPU

WEBGL SHADERS

WebGL for 3D

In 3D websites, you typically use both vertex
& fragment shaders

(you can use only fragment shaders and make 3D shapes with ray marching but it’s
usually too heavy on performance)

To make a 3D website you need a library like Three.js (or
react-three-fiber, the React version of it)

It provides a level of abstraction over WebGL, so you don’t need
to reinvent things like cameras, meshes, lights, geometries,
materials, raycasting, etc.

WEBGL SHADERS

WebGL for 3D (cont’d)

3D apple model with animated vertex shader

Loading a 3d apple model, rendering it on the webpage with
Three.js and insert the noise to the vertex shader to animate
the geometry

Torus Knot with custom fragment shader

Taking a Torus Knot geometry that’s available in three.js and
using a custom fragment shader for knot material

With all the primitives available, you don’t really need to
write custom shaders. But you can insert GLSL code in both
vertex and fragment shaders

WEBGL SHADERS

https://codepen.io/ksenia-k/full/ZEdEgyB
https://codepen.io/ksenia-k/full/gOBqPWX

WebGL for 2D

The vertex shader is always on the web page that just has a fragment
shader on it, but it only provides a simple plane that takes up the
entire <canvas>

With JavaScript and WebGL, we build an interface between shader and
<canvas> and pass uniforms to GLSL code:

● Canvas resolution – can be dynamic, like a full-screen animation
● Time value
● Cursor position (for basic interactivity)
● Colors, images, or any custom data

Advanced setups can include framebuffers, textures, multiple shader passes, etc etc.

WEBGL SHADERS

WebGL for 2D (cont’d)

Combining shaders with JS can produce cool, unique visuals:

● Pass click position to a shader
● Pass image and click as a texture
● Swap framebuffers to draw on previous frame
● Scroll-based shader
● Fluid simulation with multiple shader passes

Compared to other web graphic tools (SVG, Canvas API), WebGL is way more powerful but
also harder to set up and debug

WEBGL SHADERS

https://codepen.io/ksenia-k/full/rNXPZRN
https://codepen.io/ksenia-k/full/abegNPO
https://codepen.io/ksenia-k/full/RwqrxBG
https://codepen.io/ksenia-k/full/NWmMxLg
https://codepen.io/ksenia-k/full/MWMObrY

Resources

● 📚 thebookofshaders.com – Shader intro

● 🎓 threejs-journey.com – three.js course with good shaders chapter
(paid, but 100%

● worth it)

● 🔧 webglfundamentals.org and webgl2fundamentals.org – everything to
know about WebGL

● underhood

● 🎨 shadertoy.com – open-source shaders to browse

● 🧪 codepen.io – open-source web demos, search for WebGL/shaders
experiments

WEBGL SHADERS

STEP 2

COMPILE INTO A BINARY

Publish your Shader on the blockchain!

Step 1: Follow our Github repo instruction to compile
the Shader into a binary format

github.com/virtualeconomy/v-shader-hackathon

Tutorial

RUST WASM

http://github.com/virtualeconomy/v-shader-hackathon
http://medium.com/vsystems/compile-your-shader-into-a-binary-format-v-hackathon-tutorial-47b41f39065b

STEP 3

PUBLISH IT ON CHAIN

Publish your art on the chain with our one-click
Minting tool:https://marketplace.v.systems/mint

BLOCKCHAIN

Tutorial

https://marketplace.v.systems/mint
https://medium.com/vsystems/compile-your-shader-into-a-binary-format-v-hackathon-tutorial-47b41f39065b

STEP 4

SUBMIT FOR REVIEW

Tutorial

Fill out the form with your Shader NFT ID:
https://hackathon.v.systems/submit

https://medium.com/vsystems/compile-your-shader-into-a-binary-format-v-hackathon-tutorial-47b41f39065b
https://hackathon.v.systems/submit

Example

https://marketplace.v.systems/discover/nft-detail?nftTokenId=TWZ8TmaHM4ncukX6vMDrvXQ9cH7uqmq3Ccjt6WkwX

RESOURCES

Resources

https://github.com/virtualeconomy/v-shader-hackathon
https://hackathon.v.systems/techresources
https://medium.com/@vsystems

https://hackathon.v.systems/techresources

Questions

● How can I use a shader to mix two images of different
resolution?

○ For example, I want to use a perlin noise texture, apply it
to an image (or a sprite in a game) to dynamically dissolve
the sprite.

● What should our submissions look like?

○ Is it ok to submit a zip file containing a html page running
a WebGL program when opened in a browser?

Schedule

Hackathon
Submissions

Project
review

Winner
announcement

UNTIL 26
APRIL

27 APRIL
- 15 MAY

16 MAY
2025

ABOUT V SYSTEMS

About V Systems
V Systems (VSYS) is an open-source network that supports the
efficient and agile development of decentralized applications.

Enterprise Blockchain
Solutions
codedsolution.xyz

Public Blockchain
for Developers
www.v.systems

Follow us on social media

hackathon.v.systems/
panel

VSYSCoin V Systems t.me/vhackathon discord.gg/2N9cWJ42JX V Systems

